
Hardware and Software Laboratory Project 3

(Hardware)

Implementation of the SIMPLE

Architecture Processor

Hardware and Software Laboratory Project 3

In Charge of Hardware

Computer Science Course, School of Informatics

and Mathematical Science, Faculty of Engineering,

Kyoto University

2020/04 rev

2

Experiment 3

Hardware Details and Objectives
• Details

• Microprocessor system design, logic design

• Run application programs on an FPGA

• Objectives
• Understand the operating principles behind processors

• Learn about circuit design, optimization, and running tests

• Get hands-on learning with various extension methods and

optimization techniques for processors

• References
• Shinji Tomita, Hiroshi Nakashima: Computer Hardware

• D.A. Patterson and J.L. Hennessy (authors), Mitsuaki Narita

(translation): Computer Organization and Design 1 and 2, etc.

4

SIMPLE Processor Architecture

5

Overview of SIMPLE
SIxteen-bit MicroProcessor for Laboratory Experiment
Simple instruction set

☺Equipped with essentially all the basic functionalities

• Characteristics
• 16-bit fixed length instructions

• 8 general purpose registers

• 16-bit × 64 K word main memory

• Load/store architecture

• 2 operand format instruction set (Rd op Rs -> Rd)

6

Architecture Description

• Architecture
• Computer configuration

• Processor, memory, I/O, etc.

• Configuration of the main memory and registers will be

included here

• Instruction set architecture
• Instruction configuration

• The aforementioned load/store architecture is one of

the instruction set formats

• Microarchitecture
• Implementation of the architecture at the circuit level

7

Main memory and register

Components that represent the status of the computer

1. Main memory
● 16-bit × 64 K words (word address format)

● However, the maximum size that can be ensured on the

FPGA used in this experiment is about 33 K words

2. General purpose register
● 16-bit × 8 words

3. Program counter (PC)
● 16bit

4. Condition codes
● S Sign

● Z Zero

● C Carry

● V Overflow

8

Instruction Set

Components that change the state of the computer

1. Operation instructions
• Arithmetic logic operation instructions

• Shift instructions

2. Load/store instructions

3. Branch instruction
• Unconditional branch instruction

• Conditional branch instruction

4. Other
• Input-output instruction

• Stop instruction

Operation instructions

• Arithmetic logic operation instructions

• r[Rd] = r[Rd] op3 r[Rs]

• Shift instructions

• r[Rd] = shift_op3(r[Rd], d)

• Note: sets condition codes after running

9

11 Rs Rd op3 D

15 13 10 7 3 0

Load/Store Instruction (1)

• Load instruction (op1 : 00)
• r[Ra] = *(r[Rb] + sign_ext(d))

• Store instruction (op1 : 01)
• *(r[Rb] + sign_ext(d)) = r[Ra]

10

op1 Ra Rb d

15 13 10 7 0

Load/Store Instruction (2)

• Load immediate instruction
• r[Rb] = sign_ext(d)

• Any 16-bit value can be stored to the register using two load

immediate instructions and a shift instruction

11

10 001 Rb d

15 13 10 7 0

Branch Instruction (1)

• Unconditional branch instruction (B: Branch)
• PC = PC + 1 + sign_ext(d)

12

10 100 d

15 13 10 7 0

Branch Instruction (2)

• Conditional branch instruction
• if (cond) PC = PC + 1 + sign_ext(d)

• Branches according to the condition code

• Condition codes are set when executing the

operation instruction

13

10 111 cond d

15 13 10 7 0

Other Instructions

• Stop instruction (op3 : 1111)

• Input instruction (op3 : 1100)
• r[Rd] = input

• Input destination is switches on the board, etc.

• Output instruction (op3 : 1101)
• output = r[Rs]

• Output destination is the board’s LED/7SEG LED, etc.

14

11 Rs Rd op3 d

15 13 10 7 3 0

15

Basic Implementation SIMPLE/B

• Position the functional units, registers, and data buses as shown in

the following slide

• Activate the 5 phases one after another as done with the

sequential circuits in Experiment 2

• P1 Instruction fetch

• P2 Instruction decoding, register readout

• P3 Operation

• P4 Main memory access

• P5 Register writing/PC updating

• The phases are activated by a controller
• (Updates the register in which the data input into the phase is retained)

• Switches between selectors within phases as appropriate

• Updates the register in which the data output from the phase is retained

16

Register

Main

memory

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Sample Instruction for Execution

• Load instruction: program counter 100

• LD R0, 10(R1)

• Addition instruction: program counter 101

• ADD R0, R2 Abbreviation

Abbreviation

17

00
Ra

(000)

Rb

(001)

d

(00001010)

11
Rs

(010)

Rd

(000)

op3

(0000)
d

3 2 0 0 -

0 0 1 10

15 13 10 7 0

15 13 10 7 3 0

Sample Instruction for Execution

• Unconditional branch instruction: program counter 102

• B -5 Abbreviation

18

10
op2

(110)

d

(11111011)

2 6 - -5

15 13 10 7 0

Register

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Main

memory
19

Load instruction

P1

Register

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Main

memory

Load instruction

P2

20

Register

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Load instruction

P3

Main

memory
21

Register

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Load instruction

P4

Main

memory
22

Register

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Main

memory
23

Load instruction

P5

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Register

Addition instruction

P1

Main

memory
24

Register

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Addition

instruction P2

Main

memory
25

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Register

Main

memory
26

Addition instruction

P3

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Register

Addition instruction

P4

Main

memory
27

Register

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Main

memory
28

Addition instruction

P5

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Register

Unconditional branch

P1

Main

memory
29

Register

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Unconditional branch

P2

Main

memory
30

Register

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Unconditional branch

P3

Main

memory
31

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Register

Unconditional branch

P4

Main

memory
32

Register

A
d
d
re

s
s
 b

u
s

D
a
ta

 b
u
s

Main

memory
33

Unconditional branch

P5

34

Hints for Designing

35

Module Configuration

• Divide the whole into sub-designs
• Which logic to make into a unit?

• Verilog HDL module units? Functional block units?

• Which unit will each register belong to?

• Allotment of work
• Control system and data path system?

• Sub-design, top design and interface?

• Basic functionalities and extended functionalities?

• Design different versions of the same functional block

separately?

36

Test Environment

• Simulation test bench
• Automate so that the manual work needed for each

simulation is reduced

• Automate from an early stage

• Machine testing
• Probe internal signals using the board's switches

or LED

• Configure a testing circuit (probe and switch,

display driver) onto the exterior of the processor

itself

• Create a test environment from an early stage

37

Progress Management and Schedule

• Top down? Bottom up?
• Create from parts or get the top design ready first (using

dummy parts)?

• Prototyping, milestones, gantt charts
• How to structure a schedule and functions such that it can

run some instructions by the time of the midterm report

(taking into account time for testing)?

• Start with the simplest functionalities and configuration first?

Or first think of a configuration with extensions?

• When to decide the specifications of the final deliverable?

When to re-examine?

38

Assignments and Demonstrations

40

Assignment: Functionality Extensions

and Performance Evaluation
• Add some kind of extension and perform an evaluation

comparing before and after the extension was included
• How much faster are programs running?

• Max clock frequency, number of instructions executed, number of execute

cycles

• What extra hardware was needed?
• Number of gates (number of LUTs)

• Examples of potential extensions (Refer to Chapter 4 of

SIMPLE Design Resources)
• Improvements to the instruction set architecture: improvements to

existing instructions, adding new instructions, adding support for

interrupts

• Improvements to the microarchitecture: parallel execution of phases

(pipelining), parallel execution of instructions (superscalar)

41

Contest

• To you who wants to prove that your processor is the best

and leave your name in history...

• A race to see who's processor can sort data the fastest
(changes planned?)

• Data

• 1024 16-bit signed integers

• Three types of data: random, sorted in ascending order, and

sorted in descending order

• Definition of time: number of cycles until completed × clock

frequency

• An average value of the processing time for each three types of data

• Please participate and try to break the current record
http://isle3hw.kuis.kyoto-u.ac.jp /contest /index.html

http://isle3hw.kuis.kyoto-u.ac.jp/

