Hardware and Software Laboratory Project 3
(Hardware)

Implementation of the SIMPLE
Architecture Processor

Hardware and Software Laboratory Project 3
In Charge of Hardware

Computer Science Course, School of Informatics
and Mathematical Science, Faculty of Engineering,
Kyoto University

Experiment 3

Hardware Details and Objectives

* Details
« Microprocessor system design, logic design
« Run application programs on an FPGA

* Objectives
« Understand the operating principles behind processors
« Learn about circuit design, optimization, and running tests
« Get hands-on learning with various extension methods and
optimization techniques for processors

« References
« Shinji Tomita, Hiroshi Nakashima: Computer Hardware
« D.A. Patterson and J.L. Hennessy (authors), Mitsuaki Narita
(translation): Computer Organization and Design 1 and 2, etc.

SIMPLE Processor Architecture

Overview of SIMPLE

xteen-bit MicroProcessor for Laboratory Experiment
@Simple instruction set
©Equipped with essentially all the basic functionalities

* Characteristics

« 16-bit fixed length instructions

« 8 general purpose registers

e 16-bit X 64 K word main memory

« Load/store architecture

« 2 operand format instruction set (Rd op Rs -> Rd)

Architecture Description

* Architecture

« Computer configuration
« Processor, memory, 1/O, etc.
« Configuration of the main memory and registers will be

Included here

* |nstruction set architecture
« Instruction configuration
« The aforementioned load/store architecture is one of
the instruction set formats

* Microarchitecture
* Implementation of the architecture at the circuit level

Main memory and register

Components that represent the status of the computer

1.

Main memory

@® 16-bit X 64 K words (word address format)

@® However, the maximum size that can be ensured on the
FPGA used in this experiment is about 33 K words

General purpose register
@® 16-bit x 8 words

Program counter (PC)
@® 16bit

Condition codes
® S Sign
® Z Zero
® C Carny
® VV Overflow

Instruction Set

Components that change the state of the computer

1. Operation instructions
« Arithmetic logic operation instructions
« Shift instructions

2. Load/store instructions

3. Branch instruction
 Unconditional branch instruction
 Conditional branch instruction

4. Other

« Input-output instruction
e Stop instruction

Operation instructions

* Arithmetic logic operation instructions
* r[Rd] =r[Rd] op3 r[RSs]

e Shift instructions
* r[Rd] = shift_op3(r[Rd], d)

* Note: sets condition codes after running

11 Rs Rd op3

15 13 10 7 3

Load/Store Instruction (1)

« Load instruction (op1 : 00)
* r[Ra] =*(r[Rb] + sign_ext(d))

« Store Instruction (op1: 01)
* *(r[Rb] + sign_ext(d)) = r[Ra]

opl| Ra Rb

15 13 10 7

Load/Store Instruction (2)

 Load immediate instruction
* r[Rb] =sign_ext(d)

« Any 16-bit value can be stored to the register using two load
Immediate instructions and a shift instruction

10 | 001 Rb d

15 13 10 7 0

Branch Instruction (1)

« Unconditional branch instruction (B: Branch)
« PC=PC+1+sign_ext(d)

10 | 100 d

15 13 10 7

Branch Instruction (2)

« Conditional branch instruction
« if (cond) PC=PC + 1 +sign_ext(d)
« Branches according to the condition code
« Condition codes are set when executing the
operation instruction

10 111 | cond d

15 13 10 7

Other Instructions

« Stop instruction (op3: 1111)
* Input instruction (op3 : 1100)
* r[Rd] =input
* Input destination is switches on the board, etc.

e Qutput instruction (op3: 1101)
e output =r[Rs]
« QOutput destination is the board’s LED/7SEG LED, etc.

11 Rs Rd op3 d

15 13 10 7 3 0

Basic Implementation SIMPLE/B

« Position the functional units, registers, and data buses as shown in
the following slide

« Activate the 5 phases one after another as done with the
sequential circuits in Experiment 2

- P1
- P2
- P3
.- P4
- P5

Instruction fetch

Instruction decoding, register readout
Operation

Main memory access

Register writing/PC updating

« The phases are activated by a controller
» (Updates the register in which the data input into the phase is retained)
» Switches between selectors within phases as appropriate
» Updates the register in which the data output from the phase is retained

100
101
102

210

Address bus
Data bus

Main
memory

16

Sample Instruction for Execution

« Load instruction: program counter 100

LD RO, 10(R1) Abbreviation _

Ra Rb d
(000) | (001) (00001010)

15 13 10 7 0

00

« Addition instruction: program counter 101

« ADD RO, R2 Abbreviation _

Rs Rd op3 g
(010) | (000) | (0000)
15 13 10 7 3 0

11

17

Sample Instruction for Execution

« Unconditional branch instruction: program counter 102

- B-5

-5

Abbreviation 2 6
10 op2 d
(110) (11111011)
15 13 10

Data bus

Load instruction
P1

100
101
102

210

Main
memory

19

Data bus

Load instruction
P2

100
101
102

210

Main
memory

20

Data bus

Load instruction
P3

100
101
102

210

Main
memory

21

Data bus

Load instruction
P4

100
101
102

210

Main
memory

22

Data bus

Load instruction
P5

100
101
102

210

Main
memory

23

Data bus

Addition instruction

Pl

Main
memory

100
101
102

210

24

Addition
Instruction P2

100
101
102

210

Data bus

Main
memory

Data bus

Addition instruction

P3

Main
memory

100
101
102

210

26

Data bus

Addition instruction
P4

100
101
102

210

Main
memory

27

Data bus

Addition instruction

PS5

100
101
102

210

Main
memory

28

Data bus

Unconditional branch

Pl

Main
memory

100
101
102

210

29

Data bus

Unconditional branch

P2

Main
memory

100
101
102

210

30

Data bus

Unconditional branch

P3

Main
memory

100
101
102

210

31

> Unconditional branch
P4

100
101
102
AIE 210
5| IS
S ©
< O
>

Main
memory

Data bus

Unconditional branch

PS5

Main
memory

100
101
102

210

33

Hints for Designing

Module Configuration

 Divide the whole into sub-designs
* Which logic to make into a unit?
» Verilog HDL module units? Functional block units?
« Which unit will each register belong to?

« Allotment of work
« Control system and data path system?
« Sub-design, top design and interface?
« Basic functionalities and extended functionalities?

« Design different versions of the same functional block
separately?

Test Environment

« Simulation test bench
« Automate so that the manual work needed for each
simulation is reduced
« Automate from an early stage

* Machine testing
* Probe internal signals using the board's switches
or LED
« Configure a testing circuit (probe and switch,
display driver) onto the exterior of the processor

itself
 Create atest environment from an early stage

36

Progress Management and Schedule

« Top down? Bottom up?
« Create from parts or get the top design ready first (using
dummy parts)?

* Prototyping, milestones, gantt charts
« How to structure a schedule and functions such that it can
run some instructions by the time of the midterm report

(taking into account time for testing)?

 Start with the simplest functionalities and configuration first?
Or first think of a configuration with extensions?

* When to decide the specifications of the final deliverable?
When to re-examine?

Assignments and Demonstrations

Assignment: Functionality Extensions

and Performance Evaluation

Add some kind of extension and perform an evaluation

comparing before and after the extension was included

« How much faster are programs running?
« Max clock frequency, number of instructions executed, number of execute
cycles

 What extra hardware was needed?
* Number of gates (number of LUTS)

Examples of potential extensions (Refer to Chapter 4 of

SIMPLE Design Resources)

« Improvements to the instruction set architecture: improvements to
existing instructions, adding new instructions, adding support for
interrupts

« Improvements to the microarchitecture: parallel execution of phases
(pipelining), parallel execution of instructions (superscalar)

Contest

« To you who wants to prove that your processor is the best
and leave your name in history...

« Arace to see who's processor can sort data the fastest
(changes planned?)
 Data
« 1024 16-bit signed integers

» Three types of data: random, sorted in ascending order, and
sorted in descending order

 Definition of time: number of cycles until completed X clock
frequency

« An average value of the processing time for each three types of data

http://isle3hw.kuis.kyoto-u.ac.jp /contest /index.html

http://isle3hw.kuis.kyoto-u.ac.jp/

